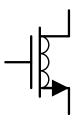
EE 230 Lecture 34

Small Signal Models
Small Signal Analysis

Quiz 34

Determine the small-signal Model for a MOSFET with W=10u, L=1u if operating with a quiescent gate-source voltage of 3V and a quiescent drain-source voltage of 8V. Assume $uC_{OX}=100E-4A/V^2$, $V_T=1V$, and $\lambda=0$.



And the number is?

1 3 8

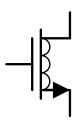
5

2

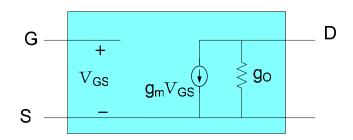
9

Quiz 34

Determine the small-signal Model for a MOSFET with W=10u, L=1u if operating with a quiescent gate-source voltage of 3V and a quiescent drain-source voltage of 8V. Assume $uC_{OX}=100E-4A/V^2$, $V_T=1V$, and $\lambda=0$.



Solution:



$$g_{m} = \mu C_{OX} \frac{W}{I} (V_{GSQ} - V_{T}) \qquad g_{O} = \lambda I_{DQ}$$

$$g_m = 10^{-4} \frac{10}{1} (3-1) = 2E-3$$
 $g_o = 0$

Small-signal Operation of Nonlinear Circuits

Small-signal principles

Example Circuit

Small-Signal Models

Small-Signal Analysis of Nonlinear Circuits

Solution for the example was based upon solving the nonlinear circuit for V_{OUT} and then linear zing the solution by doing a Taylor's series expansion

- Solution of nonlinear equations very involved with two or more nonlinear devices
- Taylor's series linearization can get very tedious if multiple nonlinear devices are present

Standard Approach to small-signal analysis of nonlinear networks

Alternative Approach to small-signal analysis of nonlinear networks

1. Solve nonlinear network

1.Linearize nonlinear devices

2. Linearize solution

- 2. Replace all devices with small-signal equivalent
- 3. Solve linear small-signal network

Alternative Approach to small-signal analysis of nonlinear networks

- 1. Linearize nonlinear devices
- 2. Replace all devices with small-signal equivalent
- 3. Solve linear small-signal network
- Must only develop linearized model once for any nonlinear device

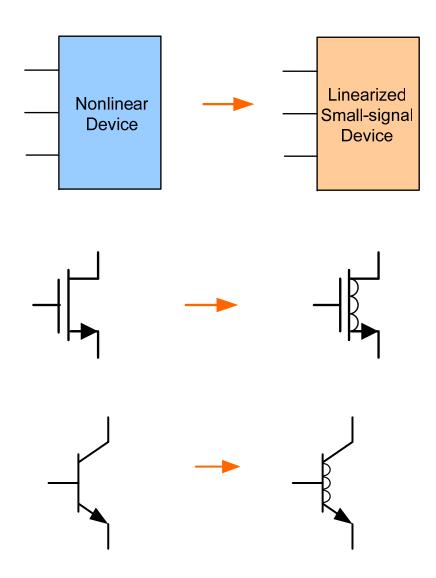
e.g. once for a MOSFET, once for a JFET, and once for a BJT

Linearized model for nonlinear device termed "small-signal model"

derivation of small-signal model for most nonlinear devices is less complicated than solving even one simple nonlinear circuit

 Solution of linear network much easier than solution of nonlinear network

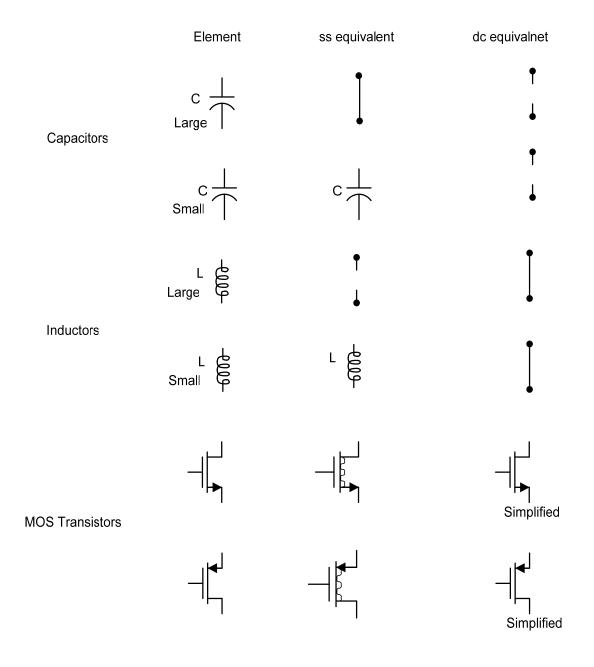
Linearized nonlinear devices



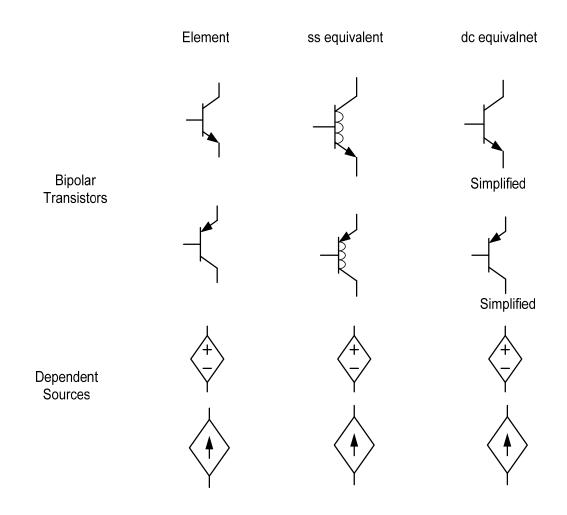
Dc and small-signal equivalent elements

	Element	ss equivalent	dc equivalnet
dc Voltage Source	V _{DC} $\frac{1}{T}$		V _{DC} $\frac{1}{1}$
ac Voltage Source	V _{AC}	V _{AC}	
dc Current Source	I _{DC}	† •	I _{DC}
ac Current Source	I _{AC}	I _{AC}	†
Resistor	R 奏	R 奏	R 奏

Dc and small-signal equivalent elements



Dc and small-signal equivalent elements

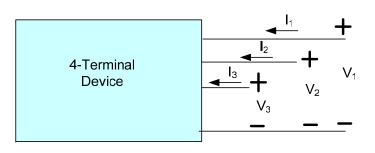


How is the small-signal equivalent circuit obtained from the nonlinear circuit?

What is the small-signal equivalent of the MOSFET and BJT?



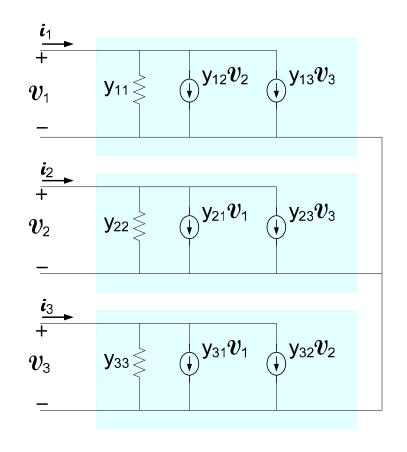
4-terminal small-signal network summary



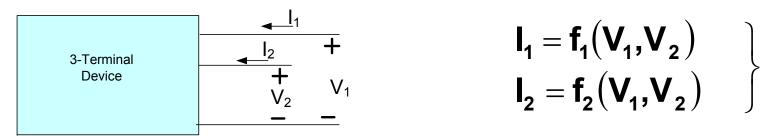
Small signal model:

$$y_{ij} = \frac{\partial f_i(V_1, V_2, V_3)}{\partial V_j}\bigg|_{\bar{V} = \bar{V}_Q}$$

$$egin{aligned} & \mathbf{I_1} = \mathbf{f_1} ig(\mathbf{V_1}, \mathbf{V_2}, \mathbf{V_3} ig) \ & \mathbf{I_2} = \mathbf{f_2} ig(\mathbf{V_1}, \mathbf{V_2}, \mathbf{V_3} ig) \ & \mathbf{I_3} = \mathbf{f_3} ig(\mathbf{V_1}, \mathbf{V_2}, \mathbf{V_3} ig) \end{aligned}$$



3-terminal small-signal network summary



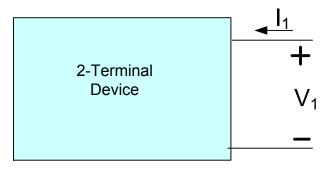
Small signal model:

$$\mathbf{i}_1 = y_{11} \mathbf{v}_1 + y_{12} \mathbf{v}_2$$
 $\mathbf{i}_2 = y_{21} \mathbf{v}_1 + y_{22} \mathbf{v}_2$

$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i}(\mathbf{V}_{1}, \mathbf{V}_{2})}{\partial \mathbf{V}_{j}} \begin{vmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{1} & \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} & \mathbf{v}_{2} & \mathbf{v}_{2} & \mathbf{v}_{3} \end{vmatrix}$$

2-terminal network summary

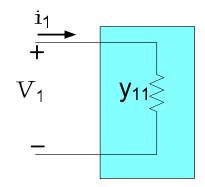
Small-Signal Model



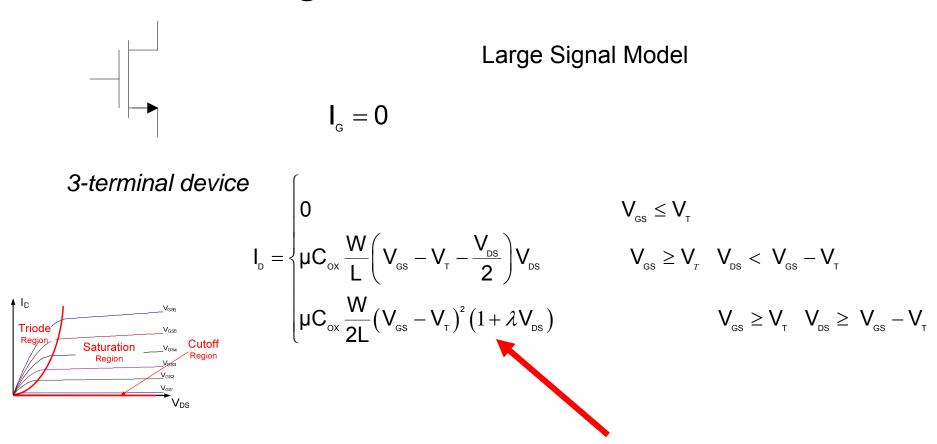
$$\boldsymbol{i}_{1} = y_{11} \boldsymbol{v}_{1}$$

$$\mathbf{y}_{11} = \frac{\partial f_{1}(V_{1})}{\partial V_{1}} \bigg|_{\bar{V} = \bar{V}_{Q}} \qquad \vec{V} = V_{1Q}$$

A Small Signal Equivalent Circuit

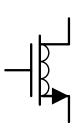


Small Signal Model of MOSFET



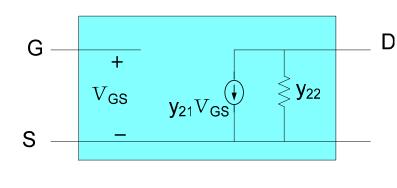
MOSFET is usually operated in saturation region in linear applications where a small-signal model is needed so will develop the small-signal model in the saturation region

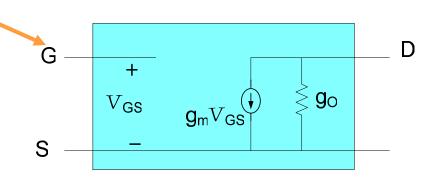
Small Signal Model of MOSFET



by convention, $y_{21}=g_m$, $y_{22}=g_0$

$$\mathbf{y}_{21} \cong g_{m} = \mu \mathbf{C}_{0X} \frac{\mathbf{W}}{\mathbf{L}} (\mathbf{V}_{GSQ} - \mathbf{V}_{T})$$
$$\mathbf{y}_{22} = g_{0} \cong \lambda \mathbf{I}_{DQ}$$

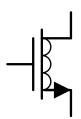




$$\mathbf{i}_{G} = 0$$

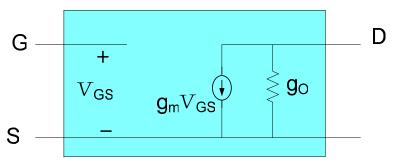
$$\mathbf{i}_{D} = g_{m} \mathbf{v}_{GS} + g_{O} \mathbf{v}_{DS}$$

Small Signal Model of MOSFET



$$g_{m} = \mu C_{ox} \frac{W}{L} (V_{gsQ} - V_{T})$$

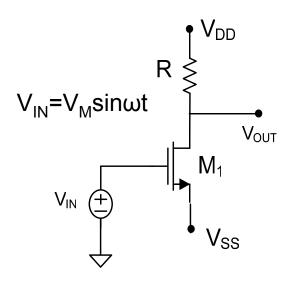
$$g_{Q} \cong \lambda I_{DQ}$$



Alternate equivalent expressions:

$$\begin{split} \mathbf{I}_{_{\mathrm{DQ}}} = & \mu \mathbf{C}_{_{\mathrm{OX}}} \frac{\mathbf{W}}{2 \mathsf{L}} \big(\mathbf{V}_{_{\mathrm{GSQ}}} - \mathbf{V}_{_{\mathrm{T}}} \big)^{2} \big(1 + \lambda \mathbf{V}_{_{\mathrm{DSQ}}} \big) \cong \mu \mathbf{C}_{_{\mathrm{OX}}} \frac{\mathbf{W}}{2 \mathsf{L}} \big(\mathbf{V}_{_{\mathrm{GSQ}}} - \mathbf{V}_{_{\mathrm{T}}} \big)^{2} \\ g_{_{m}} = & \mu \mathbf{C}_{_{\mathrm{OX}}} \frac{\mathbf{W}}{\mathsf{L}} \big(\mathbf{V}_{_{\mathrm{GSQ}}} - \mathbf{V}_{_{\mathrm{T}}} \big) \\ g_{_{m}} = & \sqrt{2 \mu \mathbf{C}_{_{\mathrm{OX}}} \frac{\mathbf{W}}{\mathsf{L}}} \bullet \sqrt{\mathbf{I}_{_{\mathrm{DQ}}}} \\ g_{_{m}} = & \frac{2 I_{_{DQ}}}{V_{_{GSQ}} - V_{_{\mathrm{T}}}} \end{split}$$

Small signal analysis example

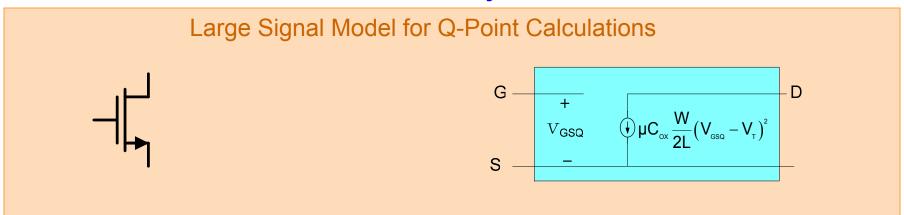


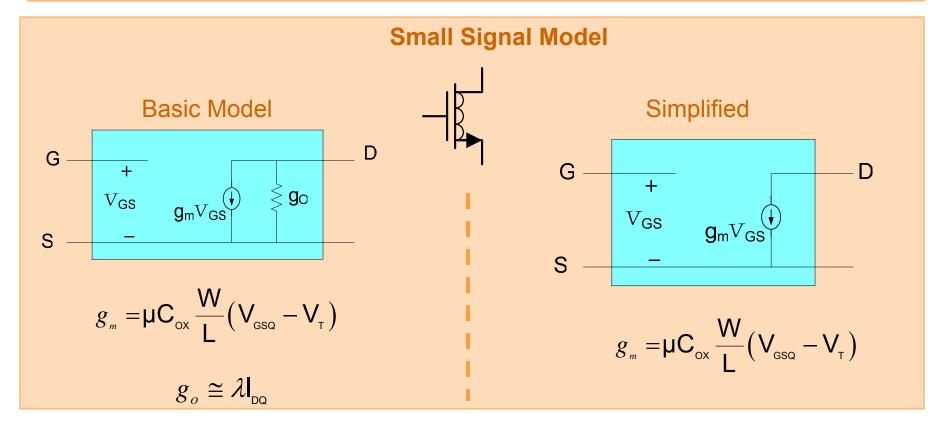
$$A_{v} = \frac{2I_{DQ}R}{\left[V_{SS} + V_{T}\right]}$$

Observe the small signal voltage gain is twice the Quiescent voltage across R divided by $V_{SS}+V_T$

- This analysis which required linearization of a nonlinear output voltage is quite tedious.
- This approach becomes unwieldy for even slightly more complicated circuits
- A much easier approach based upon the development of small signal models will provide the same results, provide more insight into both analysis and design, and result in a dramatic reduction in computational requirements

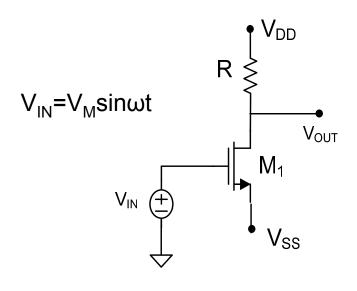
Small Signal-Large Signal Model of MOSFET in Saturation Region Summary





Consider again:

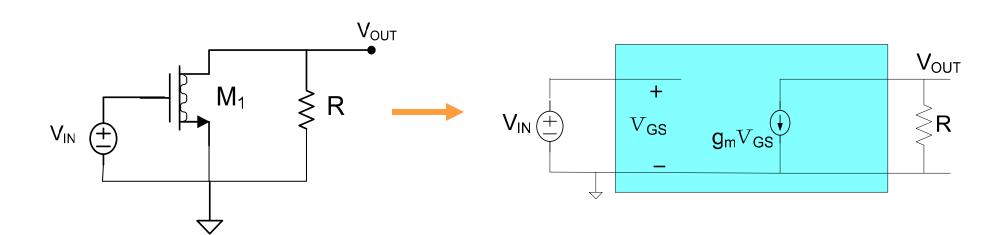
Small signal analysis example



$$A_{_{\text{V}}} = \frac{2I_{_{\text{DQ}}}R}{\left[V_{_{\text{SS}}} + V_{_{\text{T}}}\right]}$$

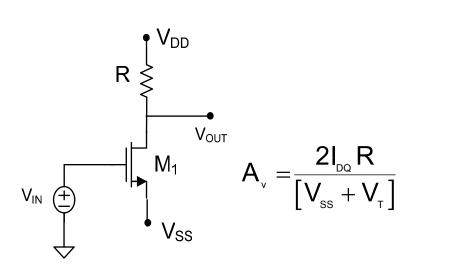
Derived for $\lambda=0$ (i.e. $g_0=0$)

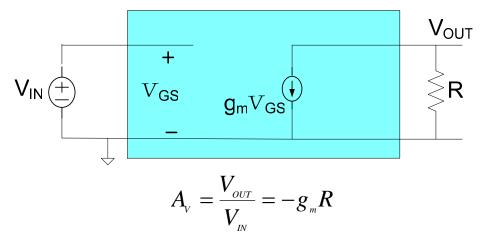
$$I_{DQ} = \mu C_{OX} \frac{W}{2L} (V_{GSQ} - V_{T})^{2}$$



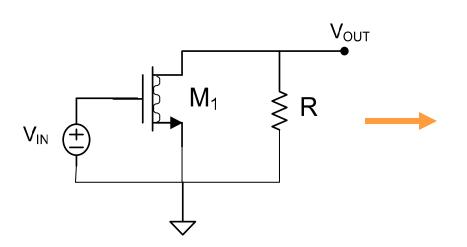
Consider again:

Small signal analysis example





The gain expressions appear to be different!

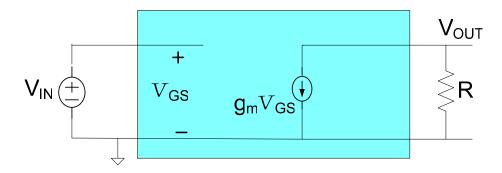


but
$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}}$$
 $V_{GSQ} = -V_{SS}$

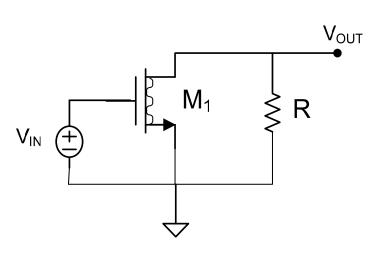
thus
$$A_{v} = \frac{2I_{DQ}R}{[V_{SS} + V_{T}]}$$

Consider again:

Small signal analysis example



$$A_{V} = \frac{V_{OUT}}{V_{IN}} = -g_{m}R$$

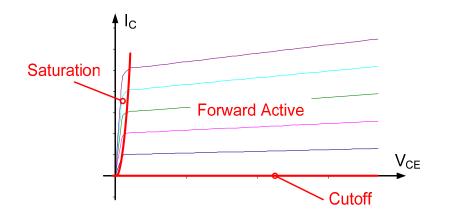


$$A_{v} = \frac{2I_{DQ}R}{[V_{SS} + V_{T}]}$$

Same expression as derived before

More accurate gain can be obtained if λ effects are included and does not significantly increase complexity of small signal analysis

3-terminal device



Forward Active Model:

$$\begin{split} &\textbf{I}_{\text{c}} = \textbf{J}_{\text{s}} \textbf{A}_{\text{e}} \textbf{e}^{\frac{\textbf{V}_{\text{BE}}}{\textbf{V}_{\text{t}}}} \Bigg(1 + \frac{\textbf{V}_{\text{ce}}}{\textbf{V}_{\text{AF}}} \Bigg) \\ &\textbf{I}_{\text{B}} = \frac{\textbf{J}_{\text{s}} \textbf{A}_{\text{E}}}{\beta} \textbf{e}^{\frac{\textbf{V}_{\text{BE}}}{\textbf{V}_{\text{t}}}} \end{split}$$

Usually operated in Forward Active Region when small-signal model is needed

$$I_{1} = f_{1}(V_{1}, V_{2}) \qquad \Leftrightarrow \qquad$$

$$I_{1} = f_{1}(V_{1}, V_{2}) \qquad \Longrightarrow \qquad I_{B} = \frac{J_{S}A_{E}}{\beta}e^{\frac{V_{BE}}{V_{t}}}$$

$$I_{2} = f_{2}(V_{1}, V_{2}) \qquad \Leftrightarrow \qquad$$

$$I_{c} = J_{s}A_{E}e^{\frac{V_{BE}}{V_{t}}}\left(1 + \frac{V_{CE}}{V_{AF}}\right)$$

Small-signal model:

$$\mathbf{y}_{ij} = \frac{\partial f_i \left(V_1, V_2 \right)}{\partial V_j} \bigg|_{\bar{V} = \bar{V}_Q}$$

$$\mathbf{y}_{11} = g_{\pi} = \left. \frac{\partial \mathbf{I}_{\mathrm{B}}}{\partial \mathbf{V}_{\mathrm{BE}}} \right|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{\mathrm{O}}}$$

$$\mathbf{y}_{_{12}}=\left.rac{\partial \mathbf{I}_{_{\mathrm{B}}}}{\partial \mathbf{V}_{_{\mathrm{CE}}}}
ight|_{ar{\mathbf{V}}=ar{\mathbf{V}}_{_{\mathbf{C}}}}$$

$$\mathbf{y}_{21} = g_{m} = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{BE}}\Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{0}}$$

$$\mathbf{y}_{22} = g_o = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{ce}}\Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{c}}$$

$$I_{B} = \frac{J_{S}A_{E}}{\beta}e^{\frac{V_{BE}}{V_{t}}}$$

$$\mathbf{I}_{c} = \mathbf{J}_{s} \mathbf{A}_{e} \mathbf{e}^{\frac{\mathbf{V}_{BE}}{\mathbf{V}_{t}}} \left(1 + \frac{\mathbf{V}_{CE}}{\mathbf{V}_{AF}} \right)$$

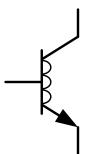
Small-signal model:

$$g_{_{\pi}} = \left. \frac{\partial I_{_{B}}}{\partial V_{_{BE}}} \right|_{_{\bar{V} = \bar{V}_{_{Q}}}} = \frac{1}{V_{_{t}}} \frac{J_{_{S}}A_{_{E}}}{\beta} e^{\frac{V_{_{BE}}}{V_{_{t}}}} \bigg|_{_{\bar{V} = \bar{V}_{_{Q}}}} = \frac{I_{_{BQ}}}{V_{_{t}}} \cong \frac{I_{_{CQ}}}{\beta V_{_{t}}}$$

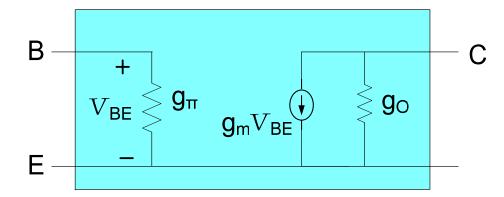
$$\mathbf{y}_{_{12}} = \left. \frac{\partial \mathbf{I}_{_{B}}}{\partial \mathbf{V}_{_{CE}}} \right|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{_{O}}} = 0$$

$$\mathbf{y}_{21} = g_{\scriptscriptstyle m} = \frac{\partial \mathbf{I}_{\scriptscriptstyle C}}{\partial \mathbf{V}_{\scriptscriptstyle BE}} \bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{\scriptscriptstyle Q}} = \frac{1}{\mathbf{V}_{\scriptscriptstyle t}} \mathbf{J}_{\scriptscriptstyle S} \mathbf{A}_{\scriptscriptstyle E} \mathbf{e}^{\frac{\mathbf{V}_{\scriptscriptstyle BE}}{\mathbf{V}_{\scriptscriptstyle t}}} \left(1 + \frac{\mathbf{V}_{\scriptscriptstyle CE}}{\mathbf{V}_{\scriptscriptstyle AF}} \right) \bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{\scriptscriptstyle Q}} = \frac{\mathbf{I}_{\scriptscriptstyle CQ}}{\mathbf{V}_{\scriptscriptstyle t}}$$

$$\mathbf{y}_{22} = g_o = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{ce}} \bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}} = \frac{\mathbf{J}_{s} \mathbf{A}_{e} \mathbf{e}^{\frac{\mathbf{V}_{BE}}{\mathbf{V}_{t}}}}{\mathbf{V}_{AF}} \bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}} \cong \frac{\mathbf{I}_{cQ}}{\mathbf{V}_{AF}}$$

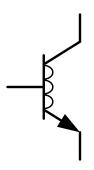


$$g_{\pi} = \frac{I_{CQ}}{\beta V_{t}}$$
 $g_{m} = \frac{I_{CQ}}{V_{t}}$ $g_{o} = \frac{I_{CQ}}{V_{AF}}$

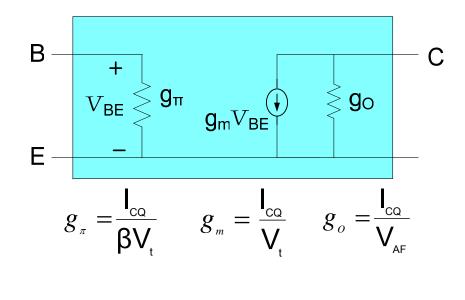


g₀ can often be neglected!

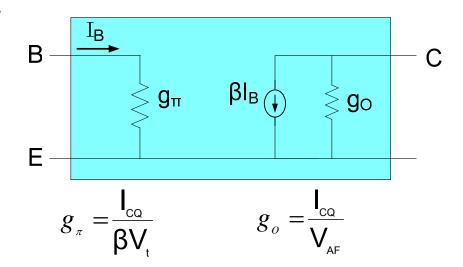
Alternate Small Signal Model of BJT



Observe:
$$g_{\scriptscriptstyle m}V_{\scriptscriptstyle BE}=g_{\scriptscriptstyle m}\frac{I_{\scriptscriptstyle B}}{g_{\scriptscriptstyle \pi}}=\beta I_{\scriptscriptstyle B}$$



Alternate Equivalent Small-signal Model



Large Signal Model of BJT in Forward Active Region for Q-point Calculations

$$I_{B} = \frac{J_{S}A_{E}}{\beta}e^{\frac{V_{BE}}{V_{t}}}$$

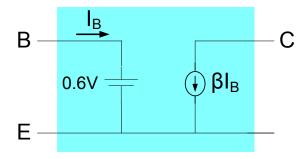
$$I_{C} = J_{S}A_{E}e^{\frac{V_{BE}}{V_{t}}}\left(1 + \frac{V_{CE}}{V_{AF}}\right)$$

$$I_{C} = \beta I_{B}$$

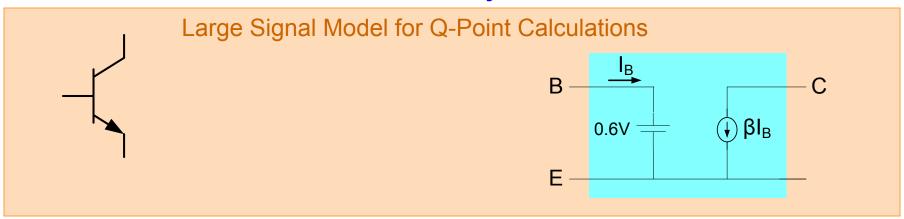
$$I_{C} = \beta I_{B}$$

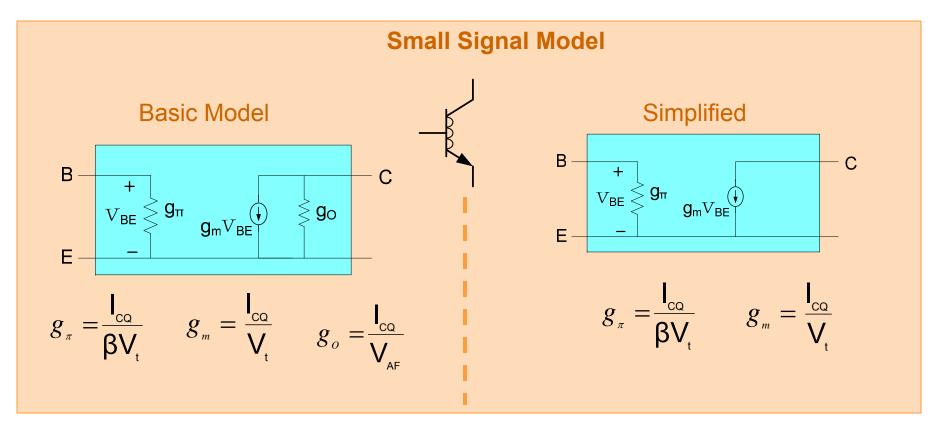
But when operating in Forward Active Region, V_{BE} will be around 0.6V

In most applications, the following model is adequate for Q-point calculations



Small Signal-Large Signal Model of BJT in Forward Active Region Summary





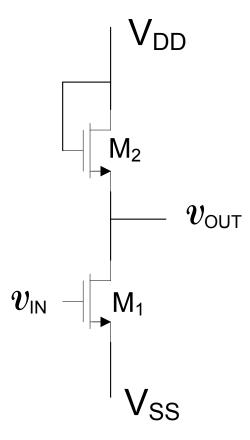
Small-signal Operation of Nonlinear Circuits

- Small-signal principles
- Example Circuit
- Small-Signal Models
- Small-Signal Analysis of Nonlinear Circuits

Recall:

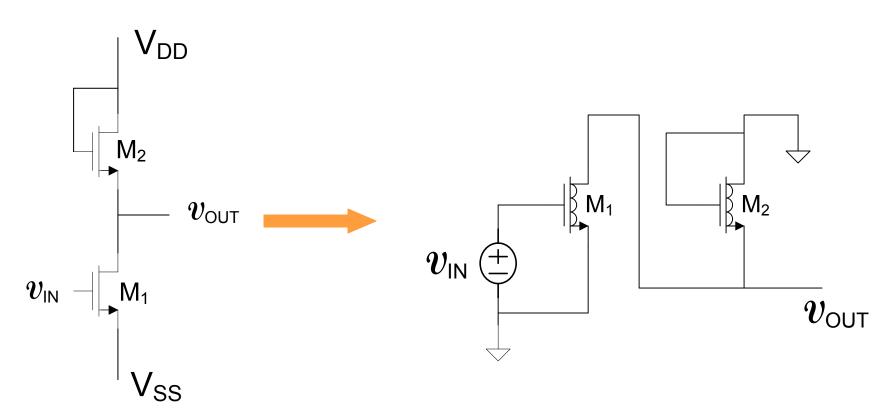
Standard Approach to small-signal analysis of nonlinear networks

- 1. Linearize nonlinear devices (have small-signal model for key devices!)
- Replace all devices with small-signal equivalent
- 3. Solve linear small-signal network



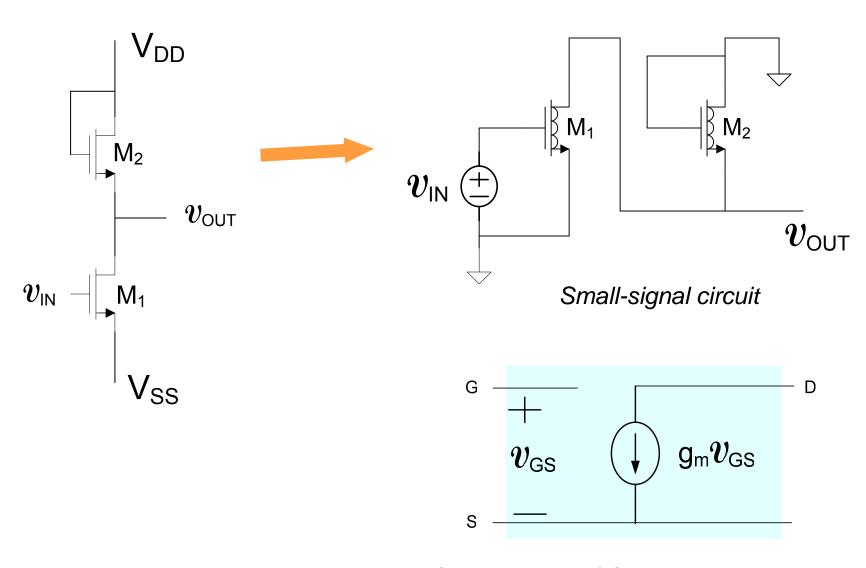
Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$

Example: Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$



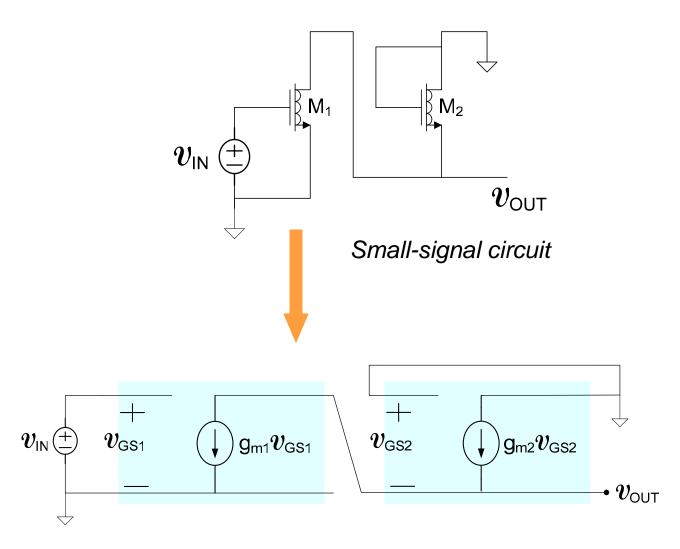
Small-signal circuit

Example: Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$

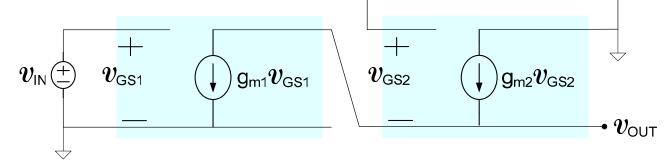


Small-signal MOSFET model for λ =0

Example: Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda = 0$



Small-signal circuit



Small-signal circuit

Analysis:

By KCL

$$g_{m1} \mathcal{V}_{GS1} = g_{m2} \mathcal{V}_{GS2}$$

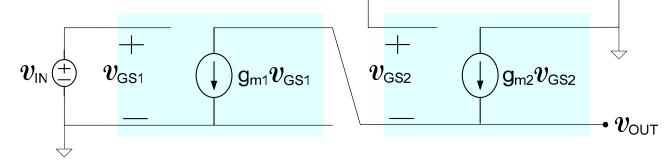
but

$$\mathbf{V}_{_{\!GS\,1}}=\mathbf{V}_{_{\!I\!N}}$$

$$-V_{GS\,2}=V_{OUT}$$

thus:

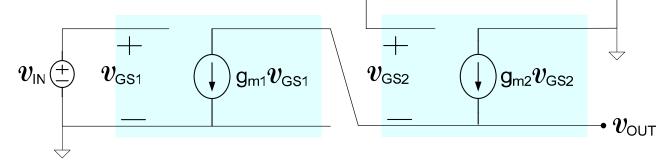
$$A_{V} = \frac{\mathbf{v}_{OUT}}{\mathbf{v}_{IN}} = -\frac{g_{m1}}{g_{m2}}$$



Analysis:

Small-signal circuit

$$A_{v} = -\frac{\sqrt{2I_{D}\mu C_{ox}} \frac{W_{1}}{L_{1}}}{\sqrt{2I_{D}\mu C_{ox}} \frac{W_{2}}{L_{2}}} = -\sqrt{\frac{W_{1}}{W_{2}}} \sqrt{\frac{L_{2}}{L_{1}}}$$



Analysis:

$$A_{V} = \frac{\mathcal{V}_{OUT}}{\mathcal{V}_{IN}} = -\frac{g_{m1}}{g_{m2}}$$

$$A_{V} = -\sqrt{\frac{W_{1}}{W_{2}}}\sqrt{\frac{L_{2}}{L_{1}}}$$

If $L_1 = L_2$, obtain

The width and length ratios can be accurately set when designed in a standard CMOS process

End of Lecture 34